Problem

Source: USA TSTST 2012, Problem 1

Tags: symmetry, pigeonhole principle, arithmetic sequence, algebra, Sequences, Additive combinatorics



Find all infinite sequences $a_1, a_2, \ldots$ of positive integers satisfying the following properties: (a) $a_1 < a_2 < a_3 < \cdots$, (b) there are no positive integers $i$, $j$, $k$, not necessarily distinct, such that $a_i+a_j=a_k$, (c) there are infinitely many $k$ such that $a_k = 2k-1$.