2004 Bulgaria Team Selection Test

Day 1

1

Let $n$ be a positive integer. Find all positive integers $m$ for which there exists a polynomial $f(x) = a_{0} + \cdots + a_{n}x^{n} \in \mathbb{Z}[X]$ ($a_{n} \not= 0$) such that $\gcd(a_{0},a_{1},\cdots,a_{n},m)=1$ and $m|f(k)$ for each $k \in \mathbb{Z}$.

2

Find all primes $p \ge 3$ such that $p- \lfloor p/q \rfloor q$ is a square-free integer for any prime $q<p$.

3

Find the maximum possible value of the inradius of a triangle whose vertices lie in the interior, or on the boundary, of a unit square.

Day 2

1

Find the maximum possible value of the product of distinct positive integers whose sum is $2004$.

2

Let $H$ be the orthocenter of $\triangle ABC$. The points $A_{1} \not= A$, $B_{1} \not= B$ and $C_{1} \not= C$ lie, respectively, on the circumcircles of $\triangle BCH$, $\triangle CAH$ and $\triangle ABH$ and satisfy $A_{1}H=B_{1}H=C_{1}H$. Denote by $H_{1}$, $H_{2}$ and $H_{3}$ the orthocenters of $\triangle A_{1}BC$, $\triangle B_{1}CA$ and $\triangle C_{1}AB$, respectively. Prove that $\triangle A_{1}B_{1}C_{1}$ and $\triangle H_{1}H_{2}H_{3}$ have the same orthocenter.

3

In any cell of an $n \times n$ table a number is written such that all the rows are distinct. Prove that we can remove a column such that the rows in the new table are still distinct.

Day 3

1

The points $P$ and $Q$ lie on the diagonals $AC$ and $BD$, respectively, of a quadrilateral $ABCD$ such that $\frac{AP}{AC} + \frac{BQ}{BD} =1$. The line $PQ$ meets the sides $AD$ and $BC$ at points $M$ and $N$. Prove that the circumcircles of the triangles $AMP$, $BNQ$, $DMQ$, and $CNP$ are concurrent.

2

The edges of a graph with $2n$ vertices ($n \ge 4$) are colored in blue and red such that there is no blue triangle and there is no red complete subgraph with $n$ vertices. Find the least possible number of blue edges.

3

Prove that among any $2n+1$ irrational numbers there are $n+1$ numbers such that the sum of any $k$ of them is irrational, for all $k \in \{1,2,3,\ldots, n+1 \}$.

Day 4

1

Find all $k>0$ such that there exists a function $f : [0,1]\times[0,1] \to [0,1]$ satisfying the following conditions: $f(f(x,y),z)=f(x,f(y,z))$; $f(x,y) = f(y,x)$; $f(x,1)=x$; $f(zx,zy) = z^{k}f(x,y)$, for any $x,y,z \in [0,1]$

2

Prove that if $a,b,c \ge 1$ and $a+b+c=9$, then $\sqrt{ab+bc+ca} \le \sqrt{a} +\sqrt{b} + \sqrt{c}$

3

A table with $m$ rows and $n$ columns is given. At any move one chooses some empty cells such that any two of them lie in different rows and columns, puts a white piece in any of those cells and then puts a black piece in the cells whose rows and columns contain white pieces. The game is over if it is not possible to make a move. Find the maximum possible number of white pieces that can be put on the table.