Problem

Source: Bulgarian IMO TST 2004, Day 4, Problem 1

Tags: function, algebra proposed, algebra



Find all $k>0$ such that there exists a function $f : [0,1]\times[0,1] \to [0,1]$ satisfying the following conditions: $f(f(x,y),z)=f(x,f(y,z))$; $f(x,y) = f(y,x)$; $f(x,1)=x$; $f(zx,zy) = z^{k}f(x,y)$, for any $x,y,z \in [0,1]$