Problem

Source: Bulgarian IMO TST 2004, Day 1, Problem 1

Tags: algebra, polynomial, induction, number theory proposed, number theory



Let $n$ be a positive integer. Find all positive integers $m$ for which there exists a polynomial $f(x) = a_{0} + \cdots + a_{n}x^{n} \in \mathbb{Z}[X]$ ($a_{n} \not= 0$) such that $\gcd(a_{0},a_{1},\cdots,a_{n},m)=1$ and $m|f(k)$ for each $k \in \mathbb{Z}$.