The points $P$ and $Q$ lie on the diagonals $AC$ and $BD$, respectively, of a quadrilateral $ABCD$ such that $\frac{AP}{AC} + \frac{BQ}{BD} =1$. The line $PQ$ meets the sides $AD$ and $BC$ at points $M$ and $N$. Prove that the circumcircles of the triangles $AMP$, $BNQ$, $DMQ$, and $CNP$ are concurrent.
Problem
Source: Bulgarian IMO TST 2004, Day 3, Problem 1
Tags: geometry, circumcircle, geometric transformation, geometry proposed, concurrency, Miquel point, Spiral Similarity