2018 Moldova EGMO TST

Day 1

1

Find if there are solutions : $ a,b \in\mathbb{N} $ , $a^2+b^2=2018 $ , $ 7|a+b $ .

2

Let $S$ = { $x_1$ , $x_2$ } be the solutions of the equation $x^2-2*a*x -1 = 0 $ , where $a$ is a positive integer.Prove that for any $ n \in\mathbb{N} $ the expression $ E=\frac{1}{8}$($x_1^{2n}-x_2^{2n}$)($x_1^{4n}-x_2^{4n}$) is a product of consecutive numbers.

3

Let $\triangle ABC $ be an acute triangle.$O$ denote its circumcenter.Points $D$,$E$,$F$ are the midpoints of the sides $BC$,$CA$,and $AB$.Let $M$ be a point on the side $BC$ . $ AM \cap EF = \big\{ N \big\} $ . $ON \cap \big( ODM \big) = \big\{ P \big\} $ Prove that $M'$ lie on $\big(DEF\big)$ where $M'$ is the symmetrical point of $M$ thought the midpoint of $DP$.

4

Find all sets of positive integers $A=\big\{ a_1,a_2,...a_{19}\big\}$ which satisfy the following: $1\big) a_1+a_2+...+a_{19}=2017;$ $2\big) S(a_1)=S(a_2)=...=S(a_{19})$ where $S\big(n\big)$ denotes digit sum of number $n$.

Day 2

5

Let $a$ and $b$ be real numbers such that $a + b = 1$. Prove the inequality $$\sqrt{1+5a^2} + 5\sqrt{2+b^2} \geq 9.$$ Proposed by Baasanjav Battsengel

6

Let $ x,y\in\mathbb{R}$ , and $ x,y \in $ $ \left(0,\frac{\pi}{2}\right) $, and $ m \in \left(2,+\infty\right) $ such that $ \tan x * \tan y = m $ . Find the minimum value of the expression $ E(x,y) = \cos x + \cos y $.

7

Let $ABCD$ be a isosceles trapezoid with $AB \| CD $ , $AD=BC$, $ AC \cap BD = $ { $O$ }. $ M $ is the midpoint of the side $AD$ . The circumcircle of triangle $ BCM $ intersects again the side $AD$ in $K$. Prove that $OK \| AB $ .

8

Let $ABC$ be a triangle with $AB=c$ , $BC=a$ and $AC=b$. If $ x,y\in\mathbb{R}$ satisfy $ \frac{1}{x} +\frac{1}{y+z} = \frac{1}{a} $ , $ \frac{1}{y} +\frac{1}{x+z} = \frac{1}{b} $ , $ \frac{1}{z} +\frac{1}{y+x} = \frac{1}{c} $ . Prove that the following equality holds $ x(p-a) + y(p-b) + z(p-c) = 3r^2 + 12R*r , $ Where $p$ is semi-perimeter, $R$ is the circumradius and $r$ is the inradius.