Let $ABC$ be a triangle with $AB=c$ , $BC=a$ and $AC=b$. If $ x,y\in\mathbb{R}$ satisfy $ \frac{1}{x} +\frac{1}{y+z} = \frac{1}{a} $ , $ \frac{1}{y} +\frac{1}{x+z} = \frac{1}{b} $ , $ \frac{1}{z} +\frac{1}{y+x} = \frac{1}{c} $ . Prove that the following equality holds $ x(p-a) + y(p-b) + z(p-c) = 3r^2 + 12R*r , $ Where $p$ is semi-perimeter, $R$ is the circumradius and $r$ is the inradius.