Let $\triangle ABC $ be an acute triangle.$O$ denote its circumcenter.Points $D$,$E$,$F$ are the midpoints of the sides $BC$,$CA$,and $AB$.Let $M$ be a point on the side $BC$ . $ AM \cap EF = \big\{ N \big\} $ . $ON \cap \big( ODM \big) = \big\{ P \big\} $ Prove that $M'$ lie on $\big(DEF\big)$ where $M'$ is the symmetrical point of $M$ thought the midpoint of $DP$.