Let $ABCD$ be a isosceles trapezoid with $AB \| CD $ , $AD=BC$, $ AC \cap BD = $ { $O$ }. $ M $ is the midpoint of the side $AD$ . The circumcircle of triangle $ BCM $ intersects again the side $AD$ in $K$. Prove that $OK \| AB $ .
Source: EGMO 2018 Moldova TST
Tags: geometry, circumcircle
Let $ABCD$ be a isosceles trapezoid with $AB \| CD $ , $AD=BC$, $ AC \cap BD = $ { $O$ }. $ M $ is the midpoint of the side $AD$ . The circumcircle of triangle $ BCM $ intersects again the side $AD$ in $K$. Prove that $OK \| AB $ .