1972 Bulgaria National Olympiad

Day 1

Problem 1

Prove that there are don't exist integers $a,b,c$ such that for every integer $x$ the number $A=(x+a)(x+b)(x+c)-x^3-1$ is divisible by $9$. I. Tonov

Problem 2

Solve the system of equations: $$\begin{cases}\sqrt{\frac{y(t-y)}{t-x}-\frac4x}+\sqrt{\frac{z(t-z)}{t-x}-\frac4x}=\sqrt x\\\sqrt{\frac{z(t-z)}{t-y}-\frac4y}+\sqrt{\frac{x(t-x)}{t-y}-\frac4y}=\sqrt y\\\sqrt{\frac{x(t-x)}{t-z}-\frac4z}+\sqrt{\frac{y(t-y)}{t-z}-\frac4z}=\sqrt z\\x+y+z=2t\end{cases}$$if the following conditions are satisfied: $0<x<t$, $0<y<t$, $0<z<t$. H. Lesov

Problem 3

Prove the equality: $$\sum_{k=1}^{n-1}\frac1{\sin^2\frac{(2k+1)\pi}{2n}}=n^2$$where $n$ is a natural number. H. Lesov

Day 2

Problem 4

Find maximal possible number of points lying on or inside a circle with radius $R$ in such a way that the distance between every two points is greater than $R\sqrt2$. H. Lesov

Problem 5

In a circle with radius $R$, there is inscribed a quadrilateral with perpendicular diagonals. From the intersection point of the diagonals, there are perpendiculars drawn to the sides of the quadrilateral. (a) Prove that the feet of these perpendiculars $P_1,P_2,P_3,P_4$ are vertices of the quadrilateral that is inscribed and circumscribed. (b) Prove the inequalities $2r_1\le\sqrt2 R_1\le R$ where $R_1$ and $r_1$ are radii respectively of the circumcircle and inscircle to the quadrilateral $P_1P_2P_3P_4$. When does equality hold? H. Lesov

Problem 6

It is given a tetrahedron $ABCD$ for which two points of opposite edges are mutually perpendicular. Prove that: (a) the four altitudes of $ABCD$ intersects at a common point $H$; (b) $AH+BH+CH+DH<p+2R$, where $p$ is the sum of the lengths of all edges of $ABCD$ and $R$ is the radii of the sphere circumscribed around $ABCD$. H. Lesov