In a circle with radius $R$, there is inscribed a quadrilateral with perpendicular diagonals. From the intersection point of the diagonals, there are perpendiculars drawn to the sides of the quadrilateral. (a) Prove that the feet of these perpendiculars $P_1,P_2,P_3,P_4$ are vertices of the quadrilateral that is inscribed and circumscribed. (b) Prove the inequalities $2r_1\le\sqrt2 R_1\le R$ where $R_1$ and $r_1$ are radii respectively of the circumcircle and inscircle to the quadrilateral $P_1P_2P_3P_4$. When does equality hold? H. Lesov
Problem
Source: Bulgaria 1972 P5
Tags: geometry, cyclic quadrilateral, perpendicular, inequalities, Geometric Inequalities