Solve the system of equations: $$\begin{cases}\sqrt{\frac{y(t-y)}{t-x}-\frac4x}+\sqrt{\frac{z(t-z)}{t-x}-\frac4x}=\sqrt x\\\sqrt{\frac{z(t-z)}{t-y}-\frac4y}+\sqrt{\frac{x(t-x)}{t-y}-\frac4y}=\sqrt y\\\sqrt{\frac{x(t-x)}{t-z}-\frac4z}+\sqrt{\frac{y(t-y)}{t-z}-\frac4z}=\sqrt z\\x+y+z=2t\end{cases}$$if the following conditions are satisfied: $0<x<t$, $0<y<t$, $0<z<t$. H. Lesov