Prove the equality: $$\sum_{k=1}^{n-1}\frac1{\sin^2\frac{(2k+1)\pi}{2n}}=n^2$$where $n$ is a natural number. H. Lesov
Source: Bulgaria 1972 P3
Tags: trigonometry, algebra
Prove the equality: $$\sum_{k=1}^{n-1}\frac1{\sin^2\frac{(2k+1)\pi}{2n}}=n^2$$where $n$ is a natural number. H. Lesov