You are given $n$ different primes $p_1, p_2,..., p_n$. Consider the polynomial $$x^n + a_1x^{n -1} + a_2x^{n - 2} + ...+ a_{n - 1}x + a_n$$, where $a_i$ is the product of the first $i$ given prime numbers. For what $n$ can it have an integer root?
2021 239 Open Mathematical Olympiad
Grade 10-11
A triangle $ABC$ with an obtuse angle at the vertex $C$ is inscribed in a circle with a center at point $O$. Circumcircle of triangle $AOB$ centered at point $P$ intersects line $AC$ at points $A$ and $A_1$, line $BC$ at points $B$ and $B_1$, and the perpendicular bisector of the segment $PC$ at points $D$ and $E$. Prove that points $D$ and $E$ together with the centers of the circumscribed circles of triangles $A_1OC$ and $B_1OC$ lie on one circle.
Given are two distinct sequences of positive integers $(a_n)$ and $(b_n)$, such that their first two members are coprime and smaller than $1000$, and each of the next members is the sum of the previous two. 8-9 grade Prove that if $a_n$ is divisible by $b_n$, then $n<50$ 10-11 grade Prove that if $a_n^{100}$ is divisible by $b_n$ then $n<5000$
Symedians of an acute-angled non-isosceles triangle $ABC$ intersect at a point at point $L$, and $AA_1$, $BB_1$ and $CC_1$ are its altitudes. Prove that you can construct equilateral triangles $A_1B_1C'$, $B_1C_1A'$ and $C_1A_1B'$ not lying in the plane $ABC$, so that lines $AA' , BB'$ and $CC'$ and also perpendicular to the plane $ABC$ at point $L$ intersected at one point.
Let $a,b,c$ be some complex numbers. Prove that $$|\dfrac{a^2}{ab+ac-bc}| + |\dfrac{b^2}{ba+bc-ac}| + |\dfrac{c^2}{ca+cb-ab}| \ge \dfrac{3}{2}$$if the denominators are not 0
The alphabet of the tribe AAB consists of the only letters $A$ and $B$. However, if you insert or delete the combination $AAA$ or $BBB$ for any words, the meaning of the word will not change. In addition, if $AB$ is replaced with $BBAA$, or vice versa, the meaning of the word doesn't change. The same holds for $BA$ and $AABB$. Is it true that $AB$ and $BA$ have the same meaning?
Given $n$ lines on the plane, they divide the plane onto several bounded or bounded polygonal regions. Define the rank of a region as the number of vertices on its boundary (a vertex is a point which belongs to at least two lines). Prove that the sum of squares of ranks of all regions does not exceed $10n^2$. (D. Fomin)
Every two residents of a city have an even number of common friends in the city. One day, some of the people sent postcards to some of their friends. Each resident with odd number of friends sent exactly one postcard, and every other - no more than one. Every resident received no more than one postcard. Prove that the number of ways the cards could be sent is odd.
Grade 8-9
Points $X$ and $Y$ are the midpoints of arcs $AB$ and $BC$ of the circumscribed circle of triangle $ABC$. Point $T$ lies on side $AC$. It turned out that the bisectors of the angles $ATB$ and $BTC$ pass through points $X$ and $Y$ respectively. What angle $B$ can be in triangle $ABC$?
same as grade 10-11 p1 - 2
Given is a simple graph with $239$ vertices, such that it is not bipartite and each vertex has degree at least $3$. Find the smallest $k$, such that each odd cycle has length at most $k$.
Different positive $a, b, c$ are such that $a^{239} = ac- 1$ and $b^{239} = bc- 1$.Prove that $238^2 (ab)^{239} <1$.
The median $AD$ is drawn in triangle $ABC$. Point $E$ is selected on segment $AC$, and on the ray $DE$ there is a point $F$, and $\angle ABC = \angle AED$ and $AF // BC$. Prove that from segments $BD, DF$ and $AF$, you can make a triangle, the area of which is not less half the area of triangle $ABC$.
variation of grade 10-11 p3 - 6
Given is a grid with $2$ rows and $120$ columns, such that each cell has a number from the set $1, 2, ..., 120$. It is known that in each column, the upper number in it is smaller than the lower number, and in each row, the numbers are in non-strict increasing order from left to right. Prove that the number of these tables is multiple of $239$.
same as grade 10-11 p7 - 8