Let $a,b,c$ be some complex numbers. Prove that $$|\dfrac{a^2}{ab+ac-bc}| + |\dfrac{b^2}{ba+bc-ac}| + |\dfrac{c^2}{ca+cb-ab}| \ge \dfrac{3}{2}$$if the denominators are not 0
Source: Open math olympiad of lyceum 239
Tags: complex numbers, inequalities
Let $a,b,c$ be some complex numbers. Prove that $$|\dfrac{a^2}{ab+ac-bc}| + |\dfrac{b^2}{ba+bc-ac}| + |\dfrac{c^2}{ca+cb-ab}| \ge \dfrac{3}{2}$$if the denominators are not 0