We can see $a^{239}-b^{239}=c(a-b)$ . By divide $a-b$ we can see :
$$a^{238}+a^{237}b+...+b^{238} = c$$( )
If we put this reasualt in main equation we get $c=1$ . ( )
By ( ) and ( ) we get :
$$1 = a^{238}+a^{237}b+...+b^{238} > 238(ab)^{\frac{239}{2}}$$
And inequality is strict beacuse $a \neq b $ .$\blacksquare$