Problem

Source: 239 MO 2021 10-11 p1 , 8-9 p2

Tags: primes, Integer, polynomial, Integer Polynomial, algebra



You are given $n$ different primes $p_1, p_2,..., p_n$. Consider the polynomial $$x^n + a_1x^{n -1} + a_2x^{n - 2} + ...+ a_{n - 1}x + a_n$$, where $a_i$ is the product of the first $i$ given prime numbers. For what $n$ can it have an integer root?