Find all functions $f:\mathbb Z_{>0}\to \mathbb Z_{>0}$ such that $a+f(b)$ divides $a^2+bf(a)$ for all positive integers $a$ and $b$ with $a+b>2019$.
2020 Taiwan TST Round 2
Quiz 1
The condition $a+b>2019$ was removed.
Let $ABCDE$ be a convex pentagon with $CD= DE$ and $\angle EDC \ne 2 \cdot \angle ADB$. Suppose that a point $P$ is located in the interior of the pentagon such that $AP =AE$ and $BP= BC$. Prove that $P$ lies on the diagonal $CE$ if and only if area $(BCD)$ + area $(ADE)$ = area $(ABD)$ + area $(ABP)$. (Hungary)
Quiz 2
Let $\mathbb{R}$ denote the set of all real numbers. Determine all functions $f:\mathbb{R}\to\mathbb{R}$ such that for all real numbers $x$ and $y$, \[f(xy+xf(x))=f(x)\left(f(x)+f(y)\right).\]
(So bad that I still don't wanna release now) - 2
Quiz 3
Find all triples $(a, b, c)$ of positive integers such that $a^3 + b^3 + c^3 = (abc)^2$.
There are $n$ cities in a country, where $n>1$. There are railroads connecting some of the cities so that you can travel between any two cities through a series of railroads (railroads run in both direction.) In addition, in this country, it is impossible to travel from a city, through a series of distinct cities, and return back to the original city. We define the degree of a city as the number of cities directly connected to it by a single segment of railroad. For a city $A$ that is directly connected to $x$ cities, with $y$ of those cities having a smaller degree than city $A$, the significance of city $A$ is defined as $\frac{y}{x}$. Find the smallest positive real number $t$ so that, for any $n>1$, the sum of the significance of all cities is less than $tn$, no matter how the railroads are paved. Proposed by houkai
Mock IMO, Day 1
Let $ABC$ be a triangle. Circle $\Gamma$ passes through $A$, meets segments $AB$ and $AC$ again at points $D$ and $E$ respectively, and intersects segment $BC$ at $F$ and $G$ such that $F$ lies between $B$ and $G$. The tangent to circle $BDF$ at $F$ and the tangent to circle $CEG$ at $G$ meet at point $T$. Suppose that points $A$ and $T$ are distinct. Prove that line $AT$ is parallel to $BC$. (Nigeria)
Let $a$ and $b$ be two positive integers. Prove that the integer \[a^2+\left\lceil\frac{4a^2}b\right\rceil\]is not a square. (Here $\lceil z\rceil$ denotes the least integer greater than or equal to $z$.) Russia
There are $N$ acute triangles on the plane. Their vertices are all integer points, their areas are all equal to $2^{2020}$, but no two of them are congruent. Find the maximum possible value of $N$. Note: $(x,y)$ is an integer point if and only if $x$ and $y$ are both integers. Proposed by CSJL
Mock IMO, Day 2
Alice and Bob are stuck in quarantine, so they decide to play a game. Bob will write down a polynomial $f(x)$ with the following properties: (a) for any integer $n$, $f(n)$ is an integer; (b) the degree of $f(x)$ is less than $187$. Alice knows that $f(x)$ satisfies (a) and (b), but she does not know $f(x)$. In every turn, Alice picks a number $k$ from the set $\{1,2,\ldots,187\}$, and Bob will tell Alice the value of $f(k)$. Find the smallest positive integer $N$ so that Alice always knows for sure the parity of $f(0)$ within $N$ turns. Proposed by YaWNeeT
A finite set $K$ consists of at least 3 distinct positive integers. Suppose that $K$ can be partitioned into two nonempty subsets $A,B\in K$ such that $ab+1$ is always a perfect square whenever $a\in A$ and $b\in B$. Prove that \[\max_{k\in K}k\geq \left\lfloor (2+\sqrt{3})^{\min\{|A|,|B|\}-1}\right\rfloor+1,\]where $|X|$ stands for the cartinality of the set $X$, and for $x\in \mathbb{R}$, $\lfloor x\rfloor$ is the greatest integer that does not exceed $x$.
Let $I, O, \omega, \Omega$ be the incenter, circumcenter, the incircle, and the circumcircle, respectively, of a scalene triangle $ABC$. The incircle $\omega$ is tangent to side $BC$ at point $D$. Let $S$ be the point on the circumcircle $\Omega$ such that $AS, OI, BC$ are concurrent. Let $H$ be the orthocenter of triangle $BIC$. Point $T$ lies on $\Omega$ such that $\angle ATI$ is a right angle. Prove that the points $D, T, H, S$ are concyclic. Proposed by ltf0501