Problem

Source: 2020 Taiwan TST Round 2 Independent Study 3-2

Tags: combinatorics, Taiwan



There are $n$ cities in a country, where $n>1$. There are railroads connecting some of the cities so that you can travel between any two cities through a series of railroads (railroads run in both direction.) In addition, in this country, it is impossible to travel from a city, through a series of distinct cities, and return back to the original city. We define the degree of a city as the number of cities directly connected to it by a single segment of railroad. For a city $A$ that is directly connected to $x$ cities, with $y$ of those cities having a smaller degree than city $A$, the significance of city $A$ is defined as $\frac{y}{x}$. Find the smallest positive real number $t$ so that, for any $n>1$, the sum of the significance of all cities is less than $tn$, no matter how the railroads are paved. Proposed by houkai