Problem

Source: 2020 Taiwan TST Round 2 Independent study 2-1

Tags: function, algebra, functional equation, Taiwan



Let $\mathbb{R}$ denote the set of all real numbers. Determine all functions $f:\mathbb{R}\to\mathbb{R}$ such that for all real numbers $x$ and $y$, \[f(xy+xf(x))=f(x)\left(f(x)+f(y)\right).\]