Problem

Source: 2020 Taiwan TST Round 2 Mock Exam 4

Tags: algebra, polynomial, Taiwan



Alice and Bob are stuck in quarantine, so they decide to play a game. Bob will write down a polynomial $f(x)$ with the following properties: (a) for any integer $n$, $f(n)$ is an integer; (b) the degree of $f(x)$ is less than $187$. Alice knows that $f(x)$ satisfies (a) and (b), but she does not know $f(x)$. In every turn, Alice picks a number $k$ from the set $\{1,2,\ldots,187\}$, and Bob will tell Alice the value of $f(k)$. Find the smallest positive integer $N$ so that Alice always knows for sure the parity of $f(0)$ within $N$ turns. Proposed by YaWNeeT