Let $f(x)=x^2+bx+1,$ where $b$ is a real number. Find the number of integer solutions to the inequality $f(f(x)+x)<0.$
2019 Bulgaria National Olympiad
Day 1
Let $ABC$ be an acute triangle with orthocenter $H$ and circumcenter $O.$ Let the intersection points of the perpendicular bisector of $CH$ with $AC$ and $BC$ be $X$ and $Y$ respectively. Lines $XO$ and $YO$ cut $AB$ at $P$ and $Q$ respectively. If $XP+YQ=AB+XY,$ determine $\measuredangle OHC.$
Find all real numbers $a,$ which satisfy the following condition: For every sequence $a_1,a_2,a_3,\ldots$ of pairwise different positive integers, for which the inequality $a_n\leq an$ holds for every positive integer $n,$ there exist infinitely many numbers in the sequence with sum of their digits in base $4038,$ which is not divisible by $2019.$
Day 2
Determine all positive integers $d,$ such that there exists an integer $k\geq 3,$ such that One can arrange the numbers $d,2d,\ldots,kd$ in a row, such that the sum of every two consecutive of them is a perfect square.
Let $P$ be a $2019-$gon, such that no three of its diagonals concur at an internal point. We will call each internal intersection point of diagonals of $P$ a knot. What is the greatest number of knots one can choose, such that there doesn't exist a cycle of chosen knots? ( Every two adjacent knots in a cycle must be on the same diagonal and on every diagonal there are at most two knots from a cycle.)
Let $ABCDEF$ be an inscribed hexagon with $$AB.CD.EF=BC.DE.FA$$ Let $B_1$ be the reflection point of $B$ with respect to $AC$ and $D_1$ be the reflection point of $D$ with respect to $CE,$ and finally let $F_1$ be the reflection point of $F$ with respect to $AE.$ Prove that $\triangle B_1D_1F_1\sim BDF.$