Let $ABCDEF$ be an inscribed hexagon with $$AB.CD.EF=BC.DE.FA$$ Let $B_1$ be the reflection point of $B$ with respect to $AC$ and $D_1$ be the reflection point of $D$ with respect to $CE,$ and finally let $F_1$ be the reflection point of $F$ with respect to $AE.$ Prove that $\triangle B_1D_1F_1\sim BDF.$
Problem
Source: Bulgaria National Olympiad 2019
Tags: geometry, geometric transformation, reflection