Problem

Source: Bulgaria National Olympiad 2019

Tags: Circumcenter, geometry, orthocenter, circumcircle, perpendicular bisector



Let $ABC$ be an acute triangle with orthocenter $H$ and circumcenter $O.$ Let the intersection points of the perpendicular bisector of $CH$ with $AC$ and $BC$ be $X$ and $Y$ respectively. Lines $XO$ and $YO$ cut $AB$ at $P$ and $Q$ respectively. If $XP+YQ=AB+XY,$ determine $\measuredangle OHC.$