Find all pairs of positive integers $(a,b)$ such that $5a^b - b = 2004$.
2004 Federal Math Competition of S&M
1st Grade
In a triangle $ABC$, points $D$ and $E$ are taken on rays $CB$ and $CA$ respectively so that $CD=CE = \frac{AC+BC}{2}$. Let $H$ be the orthocenter of the triangle, and $P$ be the midpoint of the arc $AB$ of the circumcircle of $ABC$ not containing $C$. Prove that the line $DE$ bisects the segment $HP$.
If $a,b,c$ are positive numbers such that $abc = 1$, prove the inequality $\frac{1}{\sqrt{b+\frac{1}{a}+\frac{1}{2}}} + \frac{1}{\sqrt{c+\frac{1}{b}+\frac{1}{2}}} + \frac{1}{\sqrt{a+\frac{1}{c}+\frac{1}{2}}} \geq \sqrt{2}$
A set $S$ of $100$ points, no four in a plane, is given in space. Prove that there are no more than $4 .101^2$ tetrahedra with the vertices in $S$, such that any two of them have at most two vertices in common.
2nd Grade
Suppose that $a,b,c$ are positive numbers such that $\frac{a}{b}+\frac{b}{c}+\frac{c}{a}$ is an integer. Show that $abc$ is a perfect cube.
Let $r$ be the inradius of an acute triangle. Prove that the sum of the distances from the orthocenter to the sides of the triangle does not exceed $3r$
Let $M, N, P$ be arbitrary points on the sides $BC, CA, AB$ respectively of an acute-angled triangle $ABC$. Prove that at least one of the following inequalities is satisfied: $NP \geq \frac{1}{2}BC; PM \geq \frac{1}{2}CA; MN \geq \frac{1}{2}AB$
Baron Minchausen talked to a mathematician. Baron said that in his country from any town one can reach any other town by a road. Also, if one makes a circular trip from any town, one passes through an odd number of other towns. By this, as an answer to the mathematician’s question, Baron said that each town is counted as many times as it is passed through. Baron also added that the same number of roads start at each town in his country, except for the town where he was born, at which a smaller number of roads start. Then the mathematician said that baron lied. How did he conclude that?
3rd and 4th Grades
In a triangle $ABC$ of the area $S$, point $H$ is the orthocenter, $D,E,F$ are the feet of the altitudes from $A,B,C$, and $P,Q,R$ are the reflections of $A,B,C$ in $BC,CA,AB$, respectively. The triangles $DEF$ and $PQR$ have the same area $T$. Given that $T > \frac{3}{5}S$, prove that $T = S$.
The sequence $(a_n)$ is determined by $a_1 = 0$ and $(n+1)^3a_{n+1} = 2n^2(2n+1)a_n+2(3n+1)$ for $n \geq 1$. Prove that infinitely many terms of the sequence are positive integers.
Let $A = \{1,2,3, . . . ,11\}$. How many subsets $B$ of $A$ are there, such that for each $n\in \{1,2, . . . ,8\}$, if $n$ and $n+2$ are in $B$ then at least one of the numbers $ n+1$ and $n+3$ is also in $B$?
The sequence $(a_n)$ is given by $a_1 = x \in \mathbb{R}$ and $3a_{n+1} = a_n+1$ for $n \geq 1$. Set $A = \sum_{n=1}^\infty \Big[ a_n - \frac{1}{6}\Big]$, $B = \sum_{n=1}^\infty \Big[ a_n + \frac{1}{6}\Big]$. Compute the sum $A+B$ in terms of $x$.