Problem

Source: Federal Mathematical Competition of Serbia and Montenegro 2004

Tags: inequalities



If $a,b,c$ are positive numbers such that $abc = 1$, prove the inequality $\frac{1}{\sqrt{b+\frac{1}{a}+\frac{1}{2}}} + \frac{1}{\sqrt{c+\frac{1}{b}+\frac{1}{2}}} + \frac{1}{\sqrt{a+\frac{1}{c}+\frac{1}{2}}} \geq \sqrt{2}$