In a triangle $ABC$ of the area $S$, point $H$ is the orthocenter, $D,E,F$ are the feet of the altitudes from $A,B,C$, and $P,Q,R$ are the reflections of $A,B,C$ in $BC,CA,AB$, respectively. The triangles $DEF$ and $PQR$ have the same area $T$. Given that $T > \frac{3}{5}S$, prove that $T = S$.