We say that $A$$=${$a_1,a_2,a_3\cdots a_n$} consisting $n>2$ distinct positive integers is $good$ if for every $i=1,2,3\cdots n$ the number ${a_i}^{2015}$ is divisible by the product of all numbers in $A$ except $a_i$. Find all integers $n>2$ such that exists a $good$ set consisting of $n$ positive integers.
2015 Azerbaijan IMO TST
First Day
Find all functions $f:[0,1] \to \mathbb{R}$ such that the inequality \[(x-y)^2\leq|f(x) -f(y)|\leq|x-y|\] is satisfied for all $x,y\in [0,1]$
Consider a trapezoid $ABCD$ with $BC||AD$ and $BC<AD$. Let the lines $AB$ and $CD$ meet at $X$. Let $\omega_1$ be the incircle of the triangle $XBC$, and let $\omega_2$ be the excircle of the triangle $XAD$ which is tangent to the segment $AD$ . Denote by $a$ and $d$ the lines tangent to $\omega_1$ , distinct from $AB$ and $CD$, and passing through $A$ and $D$, respectively. Denote by $b$ and $c$ the lines tangent to $\omega_2$ , distinct from $AB$ and $CD$, passing through $B$ and $C$ respectively. Assume that the lines $a,b,c$ and $d$ are distinct. Prove that they form a parallelogram.
Second Day
Let $\omega$ be the circumcircle of an acute-angled triangle $ABC$. The lines tangent to $\omega$ at the points $A$ and $B$ meet at $K$. The line passing through $K$ and parallel to $BC$ intersects the side $AC$ at $S$. Prove that $BS=CS$
Alex and Bob play a game 2015 x 2015 checkered board by the following rules.Initially the board is empty: the players move in turn, Alex moves first. By a move, a player puts either red or blue token into any unoccopied square. If after a player's move there appears a row of three consecutive tokens of the same color( this row may be vertical,horizontal, or dioganal), then this player wins. If all the cells are occupied by tokens, but no such row appears, then a draw is declared.Determine whether Alex, Bob, or none of them has winning strategy.
Let $n$ and $k$ be two positive integers such that $n>k$. Prove that the equation $x^n+y^n=z^k$ has a solution in positive integers if and only if the equation $x^n+y^n=z^{n-k}$ has a solution in positive integers.