Problem

Source: 2015 Azerbaijan IMO TST

Tags: Combinatorial Number Theory, combinatorics



We say that $A$$=${$a_1,a_2,a_3\cdots a_n$} consisting $n>2$ distinct positive integers is $good$ if for every $i=1,2,3\cdots n$ the number ${a_i}^{2015}$ is divisible by the product of all numbers in $A$ except $a_i$. Find all integers $n>2$ such that exists a $good$ set consisting of $n$ positive integers.