Problem

Source: 2015 Azerbaijan IMO TST

Tags: geometry, trapezoid



Consider a trapezoid $ABCD$ with $BC||AD$ and $BC<AD$. Let the lines $AB$ and $CD$ meet at $X$. Let $\omega_1$ be the incircle of the triangle $XBC$, and let $\omega_2$ be the excircle of the triangle $XAD$ which is tangent to the segment $AD$ . Denote by $a$ and $d$ the lines tangent to $\omega_1$ , distinct from $AB$ and $CD$, and passing through $A$ and $D$, respectively. Denote by $b$ and $c$ the lines tangent to $\omega_2$ , distinct from $AB$ and $CD$, passing through $B$ and $C$ respectively. Assume that the lines $a,b,c$ and $d$ are distinct. Prove that they form a parallelogram.