1994 Turkey Team Selection Test

April 30th - Day 1

1

$f$ is a function defined on integers and satisfies $f(x)+f(x+3)=x^2$ for every integer $x$. If $f(19)=94$, then calculate $f(94)$.

2

Let $O$ be the center and $[AB]$ be the diameter of a semicircle. $E$ is a point between $O$ and $B$. The perpendicular to $[AB]$ at $E$ meets the semicircle at $D$. A circle which is internally tangent to the arc $\overarc{BD}$ is also tangent to $[DE]$ and $[EB]$ at $K$ and $C$, respectively. Prove that $\widehat{EDC}=\widehat{BDC}$.

3

All sides and diagonals of a $25$-gon are drawn either red or white. Show that at least $500$ triangles, having all three sides are in same color and having all three vertices from the vertices of the $25$-gon, can be found.

May 1st - Day 2

1

Let $P,Q,R$ be points on the sides of $\triangle ABC$ such that $P \in [AB],Q\in[BC],R\in[CA]$ and $\frac{|AP|}{|AB|} = \frac {|BQ|}{|BC|} =\frac{|CR|}{|CA|} =k < \frac 12$ If $G$ is the centroid of $\triangle ABC$, find the ratio $\frac{Area(\triangle PQG)}{Area(\triangle PQR)}$ .

2

Show that positive integers $n_i,m_i$ $(i=1,2,3, \cdots )$ can be found such that $ \mathop{\lim }\limits_{i \to \infty } \frac{2^{n_i}}{3^{m_i }} = 1$

3

Find all integer pairs $(a,b)$ such that $a\cdot b$ divides $a^2+b^2+3$.