Show that positive integers $n_i,m_i$ $(i=1,2,3, \cdots )$ can be found such that $ \mathop{\lim }\limits_{i \to \infty } \frac{2^{n_i}}{3^{m_i }} = 1$
Source:
Tags: limit, logarithms, algebra proposed, algebra
Show that positive integers $n_i,m_i$ $(i=1,2,3, \cdots )$ can be found such that $ \mathop{\lim }\limits_{i \to \infty } \frac{2^{n_i}}{3^{m_i }} = 1$