Let $P,Q,R$ be points on the sides of $\triangle ABC$ such that $P \in [AB],Q\in[BC],R\in[CA]$ and $\frac{|AP|}{|AB|} = \frac {|BQ|}{|BC|} =\frac{|CR|}{|CA|} =k < \frac 12$ If $G$ is the centroid of $\triangle ABC$, find the ratio $\frac{Area(\triangle PQG)}{Area(\triangle PQR)}$ .