1995 Turkey MO (2nd round)

1

Let $m_{1},m_{2},\ldots,m_{k}$ be integers with $2\leq m_{1}$ and $2m_{1}\leq m_{i+1}$ for all $i$. Show that for any integers $a_{1},a_{2},\ldots,a_{k}$ there are infinitely many integers $x$ which do not satisfy any of the congruences \[x\equiv a_{i}\ (\bmod \ m_{i}),\ i=1,2,\ldots k.\]

2

Let $ABC$ be an acute triangle and let $k_{1},k_{2},k_{3}$ be the circles with diameters $BC,CA,AB$, respectively. Let $K$ be the radical center of these circles. Segments $AK,CK,BK$ meet $k_{1},k_{2},k_{3}$ again at $D,E,F$, respectively. If the areas of triangles $ABC,DBC,ECA,FAB$ are $u,x,y,z$, respectively, prove that \[u^{2}=x^{2}+y^{2}+z^{2}.\]

3

Let $A$ be a real number and $(a_{n})$ be a sequence of real numbers such that $a_{1}=1$ and \[1<\frac{a_{n+1}}{a_{n}}\leq A \mbox{ for all }n\in\mathbb{N}.\] $(a)$ Show that there is a unique non-decreasing surjective function $f: \mathbb{N}\rightarrow \mathbb{N}$ such that $1<A^{k(n)}/a_{n}\leq A$ for all $n\in \mathbb{N}$. $(b)$ If $k$ takes every value at most $m$ times, show that there is a real number $C>1$ such that $Aa_{n}\geq C^{n}$ for all $n\in \mathbb{N}$.

4

In a triangle $ABC$ with $AB\neq AC$, the internal and external bisectors of angle $A$ meet the line $BC$ at $D$ and $E$ respectively. If the feet of the perpendiculars from a point $F$ on the circle with diameter $DE$ to $BC,CA,AB$ are $K,L,M$, respectively, show that $KL=KM$.

5

Let $t(A)$ denote the sum of elements of a nonempty set $A$ of integers, and define $t(\emptyset)=0$. Find a set $X$ of positive integers such that for every integers $k$ there is a unique ordered pair of disjoint subsets $(A_{k},B_{k})$ of $X$ such that $t(A_{k})-t(B_{k}) = k$.

6

Find all surjective functions $f: \mathbb{N}\rightarrow \mathbb{N}$ such that for all $m,n\in \mathbb{N}$ \[f(m)\mid f(n) \mbox{ if and only if }m\mid n.\]