Problem

Source: Turkish Mathematical Olympiad 2nd Round 1995

Tags: induction, combinatorics unsolved, combinatorics



Let $t(A)$ denote the sum of elements of a nonempty set $A$ of integers, and define $t(\emptyset)=0$. Find a set $X$ of positive integers such that for every integers $k$ there is a unique ordered pair of disjoint subsets $(A_{k},B_{k})$ of $X$ such that $t(A_{k})-t(B_{k}) = k$.