Problem

Source: Turkish Mathematical Olympiad 2nd Round 1995

Tags: number theory unsolved, number theory



Let $m_{1},m_{2},\ldots,m_{k}$ be integers with $2\leq m_{1}$ and $2m_{1}\leq m_{i+1}$ for all $i$. Show that for any integers $a_{1},a_{2},\ldots,a_{k}$ there are infinitely many integers $x$ which do not satisfy any of the congruences \[x\equiv a_{i}\ (\bmod \ m_{i}),\ i=1,2,\ldots k.\]