Find all pairs $(x,y)$ of positive integers such that $y^{x^2}=x^{y+2}$.
2000 Taiwan National Olympiad
April 7th - Day 1
Let $ABC$ be a triangle in which $BC<AC$. Let $M$ be the mid-point of $AB$, $AP$ be the altitude from $A$ on $BC$, and $BQ$ be the altitude from $B$ on to $AC$. Suppose that $QP$ produced meets $AB$ (extended) at $T$. If $H$ is the orthocenter of $ABC$, prove that $TH$ is perpendicular to $CM$.
Consider the set $S=\{ 1,2,\ldots ,100\}$ and the family $\mathcal{P}=\{ T\subset S\mid |T|=49\}$. Each $T\in\mathcal{P}$ is labelled by an arbitrary number from $S$. Prove that there exists a subset $M$ of $S$ with $|M|=50$ such that for each $x\in M$, the set $M\backslash\{ x\}$ is not labelled by $x$.
April 29th - Day 2
Suppose that for some $m,n\in\mathbb{N}$ we have $\varphi (5^m-1)=5^n-1$, where $\varphi$ denotes the Euler function. Show that $(m,n)>1$.
Let $n$ be a positive integer and $A=\{ 1,2,\ldots ,n\}$. A subset of $A$ is said to be connected if it consists of one element or several consecutive elements. Determine the maximum $k$ for which there exist $k$ distinct subsets of $A$ such that the intersection of any two of them is connected.
Define a function $f:\mathbb{N}\rightarrow\mathbb{N}_0$ by $f(1)=0$ and \[f(n)=\max_j\{ f(j)+f(n-j)+j\}\quad\forall\, n\ge 2 \] Determine $f(2000)$.