Problem

Source:

Tags: combinatorics proposed, combinatorics



Consider the set $S=\{ 1,2,\ldots ,100\}$ and the family $\mathcal{P}=\{ T\subset S\mid |T|=49\}$. Each $T\in\mathcal{P}$ is labelled by an arbitrary number from $S$. Prove that there exists a subset $M$ of $S$ with $|M|=50$ such that for each $x\in M$, the set $M\backslash\{ x\}$ is not labelled by $x$.