Find all pairs $(x,y)$ of positive integers such that $y^{x^2}=x^{y+2}$.
Problem
Source:
Tags: inequalities, number theory proposed, number theory
22.01.2011 16:43
WakeUp wrote: Find all pairs $(x,y)$ of positive integers such that $y^{x^2}=x^{y+2}$. $x=1\iff y=1$ and the solution $(x,y)=(1,1)$ and so we'll consider from now that $x,y>1$. For any prime $p$, $p|x \iff p|y$. Let then $x_p=v_p(x)$ and $y_p=v_p(y)$ and we get $\frac{x_p}{y_p}=\frac{x^2}{y+2}=\frac uv$ for some coprime natural numbers $u,v$ So $x_p=k_pu$ and $y_p=k_pv$ and $x=a^u$ and $y=a^v$ with $a>1$ and the equation is $va^{2u}=u(a^v+2)$ If prime $p\ne 2|a$, then $v_p(v)+2uv_p(a)=v_p(u)$ and so $2uv_p(a)\le v_p(u)$ and so $2u\le v_p(u)$ which is impossible since $2u>u\ge p^{v_p(u)}\ge v_p(u)$ So $a=2^n$ and the equation is $v2^{2nu-1}=u(2^{nv-1}+1)$ If $nv>1$, we get $2^{nv-1}+1$ odd and so $2^{nv-1}+1|v$ and so $2^{nv-1}+1\le v$ and so $2^{nv-1}\le v-1\le nv-1$ which is impossible ($2^x>x$ $\forall x\ge 1$). So $nv=1$ and $n=v=1$ and the equation is $2^{2u-1}=2u$ and the equation $2^x=x+1$ has only roots $x=0$ and $x=1$ and so $u=1$ So $a=2$ and $u=1$ and $v=1$ and so $x=y=2$ Hence the result $\boxed{(x,y)\in\{(1,1),(2,2)\}}$
27.01.2011 22:48
28.11.2013 12:55
(1) $x=y=1$ (2) $x,\, y>1$ : There exist positive integer $g>1$ and $a, \, b$ such that $x=g^a,\, y=g^b$, then $bg^{2a}=a(g^b+2)$. If $2a\leq b$, $g^{2a}$ divides $2a$ and it is contradiction, so $2a>b$. Let $2a=b+k$. $bg^{2a}=a(g^b+2)\leq 2ag^b$ so $k+1\geq \frac{b+k}{b}\geq g^{2a-b}\geq 2^{k}$ then $k=1,\, b=1,\, g=2,\, a=1$. So $(x,\, y)=(g^a,\, g^b)=(2,\, 2)$. By (1) and (2), $(x,\, y)=(1,\, 1),\,(2,\, 2)$.