2023 Dutch BxMO TST

March 2023 - Date

1

Let $n \geq 1$ be an integer. Ruben takes a test with $n$ questions. Each question on this test is worth a different number of points. The first question is worth $1$ point, the second question $2$, the third $3$ and so on until the last question which is worth $n$ points. Each question can be answered either correctly or incorrectly. So an answer for a question can either be awarded all, or none of the points the question is worth. Let $f(n)$ be the number of ways he can take the test so that the number of points awarded equals the number of questions he answered incorrectly. Do there exist infinitely many pairs $(a; b)$ with $a < b$ and $f(a) = f(b)$?

2

Find all functions $f : \mathbb R \to \mathbb R$ for which \[f(a - b) f(c - d) + f(a - d) f(b - c) \leq (a - c) f(b - d),\]for all real numbers $a, b, c$ and $d$. Note that there is only one occurrence of $f$ on the right hand side!

3

We play a game of musical chairs with $n$ chairs numbered $1$ to $n$. You attach $n$ leaves, numbered $1$ to $n$, to the chairs in such a way that the number on a leaf does not match the number on the chair it is attached to. One player sits on each chair. Every time you clap, each player looks at the number on the leaf attached to his current seat and moves to sit on the seat with that number. Prove that, for any $m$ that is not a prime power with$ 1 < m \leq n$, it is possible to attach the leaves to the seats in such a way that after $m$ claps everyone has returned to the chair they started on for the first time.

4

In a triangle $\triangle ABC$ with $\angle ABC < \angle BCA$, we define $K$ as the excenter with respect to $A$. The lines $AK$ and $BC$ intersect in a point $D$. Let $E$ be the circumcenter of $\triangle BKC$. Prove that \[\frac{1}{|KA|} = \frac{1}{|KD|} + \frac{1}{|KE|}.\]

5

Find all pairs of prime numbers $(p,q)$ for which \[2^p = 2^{q-2} + q!.\]