In a triangle $\triangle ABC$ with $\angle ABC < \angle BCA$, we define $K$ as the excenter with respect to $A$. The lines $AK$ and $BC$ intersect in a point $D$. Let $E$ be the circumcenter of $\triangle BKC$. Prove that \[\frac{1}{|KA|} = \frac{1}{|KD|} + \frac{1}{|KE|}.\]
Problem
Source: 2022 Turkey JBMO TST P7 + 2023 Dutch BxMO TST, Problem 4
Tags: geometry, circumcircle