Problem

Source: 2023 Dutch BxMO TST, Problem 1

Tags: combinatorics



Let $n \geq 1$ be an integer. Ruben takes a test with $n$ questions. Each question on this test is worth a different number of points. The first question is worth $1$ point, the second question $2$, the third $3$ and so on until the last question which is worth $n$ points. Each question can be answered either correctly or incorrectly. So an answer for a question can either be awarded all, or none of the points the question is worth. Let $f(n)$ be the number of ways he can take the test so that the number of points awarded equals the number of questions he answered incorrectly. Do there exist infinitely many pairs $(a; b)$ with $a < b$ and $f(a) = f(b)$?