Determine, with proof, all triples of real numbers $(x,y,z)$ satisfying the equations $$x^3+y+z=x+y^3+z=x+y+z^3=-xyz.$$
2022 Thailand Online MO
Day 1
Let $ABCD$ be a trapezoid such that $AB \parallel CD$ and $AB > CD$. Points $X$ and $Y$ are on the side $AB$ such that $XY = AB-CD$ and $X$ lies between $A$ and $Y$. Prove that one intersection of the circumcircles of triangles $AYD$ and $BXC$ is on line $CD$.
Let $\mathbb{N}$ be the set of positive integers. Across all function $f:\mathbb{N}\to\mathbb{N}$ such that $$mn+1\text{ divides } f(m)f(n)+1$$for all positive integers $m$ and $n$, determine all possible values of $f(101).$
There are $2022$ signs arranged in a straight line. Mark tasks Auto to color each sign with either red or blue with the following condition: for any given sequence of length $1011$ whose each term is either red or blue, Auto can always remove $1011$ signs from the line so that the remaining $1011$ signs match the given color sequence without changing the order. Determine the number of ways Auto can color the signs to satisfy Mark's condition.
Let $ABC$ be an acute triangle with circumcenter $O$ and orthocenter $H$. Let $M_B$ and $M_C$ be the midpoints of $AC$ and $AB$, respectively. Place points $X$ and $Y$ on line $BC$ such that $\angle HM_BX = \angle HM_CY = 90^{\circ}$. Prove that triangles $OXY$ and $HBC$ are similar.
Day 2
Let $n$ and $k$ be positive integers. Chef Kao cuts a circular pizza through $k$ diameters, dividing the pizza into $2k$ equal pieces. Then, he dresses the pizza with $n$ toppings. For each topping, he chooses $k$ consecutive pieces of pizza and puts that topping on all of the chosen pieces. Then, for each piece of pizza, Chef Kao counts the number of distinct toppings on it, yielding $2k$ numbers. Among these numbers, let $m$ and $M$ being the minimum and maximum, respectively. Prove that $m + M = n$.
Let $p$ be a prime number, and let $a_1, a_2, \dots , a_p$ and $b_1, b_2, \dots , b_p$ be $2p$ (not necessarily distinct) integers chosen from the set $\{1, 2, \dots , p - 1\}$. Prove that there exist integers $i$ and $j$ such that $1 \le i < j \le p$ and $p$ divides $a_ib_j-a_jb_i$.
Let $ABCD$ be a convex quadrilateral with $AD = BC$, $\angle BAC+\angle DCA = 180^{\circ}$, and $\angle BAC \neq 90^{\circ}.$ Let $O_1$ and $O_2$ be the circumcenters of triangles $ABC$ and $CAD$, respectively. Prove that one intersection point of the circumcircles of triangles $O_1BC$ and $O_2AD$ lies on $AC$.
The number $1$ is written on the blackboard. At any point, Kornny may pick two (not necessary distinct) of the numbers $a$ and $b$ written on the board and write either $ab$ or $\frac{1}{a}+\frac{1}{b}+\frac{1}{ab}$ on the board as well. Determine all possible numbers that Kornny can write on the board in finitely many steps.
Let $\mathbb{Q}$ be the set of rational numbers. Determine all functions $f : \mathbb{Q}\to\mathbb{Q}$ satisfying both of the following conditions. $f(a)$ is not an integer for some rational number $a$. For any rational numbers $x$ and $y$, both $f(x + y) - f(x) - f(y)$ and $f(xy) - f(x)f(y)$ are integers.