Problem

Source: 2022 Thailand Online MO P8

Tags: geometry, circumcircle



Let $ABCD$ be a convex quadrilateral with $AD = BC$, $\angle BAC+\angle DCA = 180^{\circ}$, and $\angle BAC \neq 90^{\circ}.$ Let $O_1$ and $O_2$ be the circumcenters of triangles $ABC$ and $CAD$, respectively. Prove that one intersection point of the circumcircles of triangles $O_1BC$ and $O_2AD$ lies on $AC$.