Problem

Source: 2022 Thailand Online MO P3

Tags: function, functional equation, number theory



Let $\mathbb{N}$ be the set of positive integers. Across all function $f:\mathbb{N}\to\mathbb{N}$ such that $$mn+1\text{ divides } f(m)f(n)+1$$for all positive integers $m$ and $n$, determine all possible values of $f(101).$