2018 Thailand TSTST

Day 1 Morning

1

Prove that any rational $r \in (0, 1)$ can be written uniquely in the form $$r=\frac{a_1}{1!}+\frac{a_2}{2!}+\frac{a_3}{3!}+\cdots+\frac{a_k}{k!}$$where $a_i\text{’s}$ are nonnegative integers with $a_i\leq i-1$ for all $i$.

2

$9$ horizontal and $9$ vertical lines are drawn through a square. Prove that it is possible to select $20$ rectangles so that the sides of each rectangle is a segment of one of the given lines (including the sides of the square), and for any two of the $20$ rectangles, it is possible to cover one of them with the other (rotations are allowed).

3

Circles $O_1, O_2$ intersects at $A, B$. The circumcircle of $O_1BO_2$ intersects $O_1, O_2$ and line $AB$ at $R, S, T$ respectively. Prove that $TR = TS$

4

Define the numbers $a_0, a_1, \ldots, a_n$ in the following way: \[ a_0 = \frac{1}{2}, \quad a_{k+1} = a_k + \frac{a^2_k}{n} \quad (n > 1, k = 0,1, \ldots, n-1). \] Prove that \[ 1 - \frac{1}{n} < a_n < 1.\]

Day 1 Afternoon

5

Find all triples of real numbers $(a, b, c)$ satisfying $$a+b+c=14, \quad a^2+b^2+c^2=84,\quad a^3+b^3+c^3=584.$$

6

In a right-angled triangle $ABC$ ($\angle A = 90^o$), the perpendicular bisector of $BC$ intersects the line $AC$ in $K$ and the perpendicular bisector of $BK$ intersects the line $AB$ in $L$. If the line $CL$ be the internal bisector of angle $C$, find all possible values for angles $B$ and $C$. by Mahdi Etesami Fard

7

Evaluate $\sum_{n=2017}^{2030}\sum_{k=1}^{n}\left\{\frac{\binom{n}{k}}{2017}\right\}$. Note: $\{x\}=x-\lfloor x\rfloor$ for every real numbers $x$.

8

There are $n$ vertices and $m > n$ edges in a graph. Each edge is colored either red or blue. In each year, we are allowed to choose a vertex and flip the color of all edges incident to it. Prove that there is a way to color the edges (initially) so that they will never all have the same color

Day 2

1

Find all polynomials $P(x)$ with real coefficients satisfying: $P(2017) = 2016$ and $$(P(x)+1)^2=P(x^2+1).$$

2

There are three sticks, each of which has an integer length which is at least $n$; the sum of their lengths is $n(n + 1)/2$. Prove that it is possible to break the sticks (possibly several times) so that the resulting sticks have length $1, 2,\dots, n$. Note: a stick of length $a + b$ can be broken into sticks of lengths $a$ and $b$.

3

Let $BC$ be a chord not passing through the center of a circle $\omega$. Point $A$ varies on the major arc $BC$. Let $E$ and $F$ be the projection of $B$ onto $AC$, and of $C$ onto $AB$ respectively. The tangents to the circumcircle of $\vartriangle AEF$ at $E, F$ intersect at $P$. (a) Prove that $P$ is independent of the choice of $A$. (b) Let $H$ be the orthocenter of $\vartriangle ABC$, and let $T$ be the intersection of $EF$ and $BC$. Prove that $TH \perp AP$.

Day 3

1

Let $P$ be a given quadratic polynomial. Find all functions $f : \mathbb{R}\to\mathbb{R}$ such that $$f(x+y)=f(x)+f(y)\text{ and } f(P(x))=f(x)\text{ for all }x,y\in\mathbb{R}.$$

2

In triangle $\vartriangle ABC$, $\angle BAC = 135^o$. $M$ is the midpoint of $BC$, and $N \ne M$ is on $BC$ such that $AN = AM$. The line $AM$ meets the circumcircle of $\vartriangle ABC$ at $D$. Point $E$ is chosen on segment $AN$ such that $AE = MD$. Show that $ME = BC$.

3

Find all pairs of integers $m, n \geq 2$ such that $$n\mid 1+m^{3^n}+m^{2\cdot 3^n}.$$