Prove that any rational $r \in (0, 1)$ can be written uniquely in the form $$r=\frac{a_1}{1!}+\frac{a_2}{2!}+\frac{a_3}{3!}+\cdots+\frac{a_k}{k!}$$where $a_i\text{’s}$ are nonnegative integers with $a_i\leq i-1$ for all $i$.
Source: 2017 Thailand October Camp 1.1
Tags: number theory, factorial
Prove that any rational $r \in (0, 1)$ can be written uniquely in the form $$r=\frac{a_1}{1!}+\frac{a_2}{2!}+\frac{a_3}{3!}+\cdots+\frac{a_k}{k!}$$where $a_i\text{’s}$ are nonnegative integers with $a_i\leq i-1$ for all $i$.