There are three sticks, each of which has an integer length which is at least $n$; the sum of their lengths is $n(n + 1)/2$. Prove that it is possible to break the sticks (possibly several times) so that the resulting sticks have length $1, 2,\dots, n$. Note: a stick of length $a + b$ can be broken into sticks of lengths $a$ and $b$.