2019 Thailand TSTST

Day 1

1

Let $2561$ given points on a circle be colored either red or green. In each step, all points are recolored simultaneously in the following way: if both direct neighbors of a point $P$ have the same color as $P$, then the color of $P$ remains unchanged, otherwise $P$ obtains the other color. Starting with the initial coloring $F_1$, we obtain the colorings $F_2, F_3,\dots$ after several recoloring steps. Determine the smallest number $n$ such that, for any initial coloring $F_1$, we must have $F_n = F_{n+2}$.

2

Let $\Omega$ be the inscribed circle of a triangle $\vartriangle ABC$. Let $D, E$ and $F$ be the tangency points of $\Omega$ and the sides $BC, CA$ and $AB$, respectively, and let $AD, BE$ and $CF$ intersect $\Omega$ at $K, L$ and $M$, respectively, such that $D, E, F, K, L$ and $M$ are all distinct. The tangent line of $\Omega$ at $K$ intersects $EF$ at $X$, the tangent line of $\Omega$ at $L$ intersects $DE$ at $Y$ , and the tangent line of $\Omega$ at M intersects $DF$ at $Z$. Prove that $X,Y$ and $Z$ are collinear.

3

Find all function $f:\mathbb{Z}\to\mathbb{Z}$ satisfying $\text{(i)}$ $f(f(m)+n)+2m=f(n)+f(3m)$ for every $m,n\in\mathbb{Z}$, $\text{(ii)}$ there exists a $d\in\mathbb{Z}$ such that $f(d)-f(0)=2$, and $\text{(iii)}$ $f(1)-f(0)$ is even.

Day 2

1

Find all primes $p$ such that $(p-3)^p+p^2$ is a perfect square.

2

Let $a,b,c\in(0,\frac{4}{3})$ and $a + b + c = 3$. Prove that $$\frac{4abc}{(a+b)(a+c)}+\frac{(a+b)^2+(a+c)^2}{(a+b)+(a+c)}\leq\sum_{cyc}\frac{1}{a^2(3b+3c-5)}.$$

3

Let $ABC$ be an acute triangle with $AX, BY$ and $CZ$ as its altitudes. $\bullet$ Line $\ell_A$, which is parallel to $YZ$, intersects $CA$ at $A_1$ between $C$ and $A$, and intersects $AB$ at $A_2$ between $A$ and $B$. $\bullet$ Line $\ell_B$, which is parallel to $ZX$, intersects $AB$ at $B_1$ between $A$ and $B$, and intersects $BC$ at $B_2$ between $B$ and $C$. $\bullet$ Line $\ell_C$, which is parallel to $XY$ , intersects $BC$ at $C_1$ between $B$ and $C$, and intersects $CA$ at $C_2$ between $C$ and $A$. Suppose that the perimeters of the triangles $\vartriangle AA_1A_2$, $\vartriangle BB_1B_2$ and $\vartriangle CC_1C_2$ are equal to $CA+AB,AB +BC$ and $BC +CA$, respectively. Prove that $\ell_A, \ell_B$ and $\ell_C$ are concurrent.

Day 3

1

Let $\{x_i\}^{\infty}_{i=1}$ and $\{y_i\}^{\infty}_{i=1}$ be sequences of real numbers such that $x_1=y_1=\sqrt{3}$, $$x_{n+1}=x_n+\sqrt{1+x_n^2}\quad\text{and}\quad y_{n+1}=\frac{y_n}{1+\sqrt{1+y_n^2}}$$for all $n\geq 1$. Prove that $2<x_ny_n<3$ for all $n>1$.

2

Find all nonnegative integers $x, y, z$ satisfying the equation $$2^x+31^y=z^2.$$

3

Let $n\geq 2$ be an integer. Determine the number of terms in the polynomial $$\prod_{1\leq i< j\leq n}(x_i+x_j)$$whose coefficients are odd integers.