Problem

Source: 2018 Thailand October Camp 3.1

Tags: inequalities, Sequence, algebra



Let $\{x_i\}^{\infty}_{i=1}$ and $\{y_i\}^{\infty}_{i=1}$ be sequences of real numbers such that $x_1=y_1=\sqrt{3}$, $$x_{n+1}=x_n+\sqrt{1+x_n^2}\quad\text{and}\quad y_{n+1}=\frac{y_n}{1+\sqrt{1+y_n^2}}$$for all $n\geq 1$. Prove that $2<x_ny_n<3$ for all $n>1$.